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SUMMARY 

R-492 
_ i _ 

A theoretical method is developed for determining the pressure dis- 
tributions and loads on prismatic Yee-shaped bodies during chines-dry 
planing at high speed. The method is based on the analogy which exists 
.between the motion of the planing body through a stationary plane, ori- 
ented normal to its stagnation line, and the penetration of a two-dimen- 
sional wedge. The complete pressure distribution over an immersing wedge 
is available so that, on the basis of the above analogy, pressure dis- 
tributions and, ultimately, total loads on the planing body are obtained. 

Experiments on prismatic Vee-shaped bodies planing with chines dry 
were performed in order to obtain data in addition to those contained in 
the literature for comparison with the theory. Information on only the 
lift and vietted area is given. 

The results of the theoretical investigation are, for the most part, 
presented in graphical form. Ihese are compared with the experimental 
data obtained from the present reported tests and with other available 
data. The comparison shows that a good agreement exists between the the- 
oretically predicted and experimentally determined pressures and load* 
over fairly wide ranges of planing parameters. No attempt is made to 
describe the pressure losses in the vicinity of the step which occur in 
the true three-dimensional planing case; these tend to reduce the loads 
as predicted by the theory. 

The mathematical portions of the theory developed in this report do 
not lead to any closed-form expressions for the lift on a chines-dry 
planing body, so an empirical expression is derived from the experimental 
data. One of the practical uses of this empirical expression and of the 
theory is shown in the development of stability derivatives which are 
applicable to a linear porpoising stability analysis of the chines-dry 
planing body. 

This study was carried out at the Experimental Towing Tank, Stevens 
Institute of Technology, under Contract No. N6onr-24704 with the Office 
of Naval Research 

i 

i: 

INTRODUCTION 

The present study is part of a general program of research on 
planing surfaces which has been undertaken by the Experimental Towing 
Tank of Stevens Institute of Technology under Contract No. N6onr-247, 
Task Order 04, with the Office of Naval Research.* The current report 
deals with both theoretical and experimental aspects of the pressure dis- 

* Experiaear.a 1 Towiaf Teak report* aad papers completed to date >«:'ur tkia cotttitt sjre Itcted 
ia APPENDIX A. 
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tribution and load on a chines-dry, prismatic, Vee-shaped, planing body, 
referred to hereinafter as simply the planing body. 

• 

The problem of obtaining the pressure distribution and total load 
on a planing body by studying the three-dimensional flow about the body 
is at present too difficult to solve becausr of the complexities involved 
in establishing a mathematical model of the observed flow. Therefore, to 
achieve results, it has been necessary to approach the three-dimensional 
planing case through its two-dimensional analogue, the immersing wedge. 

In general, the procedure for applying an immersing wedge analogue 
to the three-diiuessionai planing case "is as follows: A plane is considered 
stationary in space, in which the passage of the planing body appears 
as an immersing wedge. From the pressure distribution over an immersing 
wedge that is obtained from available two-dimensional solutions, the 
pressure distribution and lead on the planing body can be fauna. The 
availability of a good two-dimensional solution is therefore a necessary 
prerequisite. 

: 
It is the purpose of this study to apply, in the manner outlined 

above, the potential theory of the flow and pressure distribution over an j 
immersing wedge developed in Reference 1. It is felt that the results thus 
obtained will be useful in determining loads and pressures for the 
chines-dry planing of both surface craft and seaplanes. They may also be 
applicable to the calculation of the pressures in the vicinity of the 
leading edge of the wetted area for the chines-wetted planing case. 

The present work supersedes Reference 2, a previous E.T.T. report 
in which a theory of the planing body is derived in nearly the same way 
as it is presently derived, that is, by applying an immersing wedge ana- 
logue. At the time of preparation of Reference 2, the complete solution r 
of the wedge immersion problem of Reference 1 was not available. Con- 
sequently, the authors of Reference 2 used two separate theories devel- 
oped by Wagner, that of the expanding plate analogy to the immersing 
wedge which does not involve a spray formation, and that of a spray-root 
formation of a planing flat plate. Since the unified treatment of the 
entire wedge problem, including .he formation of spray-root areas, became 
available in Reference 1, it appeared desirable, in the present study, to I 
complete the three-dimensional planing body theory on this basis. Another 
distinction between this work and Reference 2 is that, here, the immersing 
wedge analogue is applied in a plane normal to the stagnation line of the 
planing body rather than in a plane normal to the keel. 

Since published data for chines-dry planing are limited to a set of 
points obtained by Shoemaker (Reference 3)', it was considered necessary to 
carry out an experimental investigation to corroborate the theoretical -z 

results of this study. To this end, tests were performed on available 
9-in. -beam, Vee-shaped bodies having deadrise angles of 10°, 20°, and 30°. i.j 
The test trim range was from 2° to 12°, in 2° intervals; one test speed, A 
24.6 ft./sec, was used. The data presented are limited to the lift coef- 
ficient and wetted bottom form for all test conditions. -. 

J 
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SYMBOLS 

An wetted area delineated by the keel, step, and spray-root 
lines of the planing body projected onto the plane of the 
undisturbed water surface 

a,b constant distances locating the leading edge of the wetted 
area relative to the center of gravity of the planing 
body 

C, lift coefficient » L/£ VR
2Lk2.   a function of the trim and 

deadriae ingles of the planing body 

C_ distance from the longitudinal centerline plane of the 
planing body to the spray-root line in the step plane 

C' distance from the centerline of the two-dimensional wedge 
to the spray root 

Cs distance from the longitudinal centerline plane of the 
planing body to the stagnation line in the step plane 

C$' distance from the centerline of the two-dimensional wedge 
to the symmetrical' points cf maximum pressure 

dht1,dMJ incremental pitching moments arising from dZ1  and dZ2 

dZl,dZ3 incremental lift forces acting on the planing body 

e a function of the two-dimensional deadrise angle * C'/if' 
(see APPENDIX c) 

FltF2 functions of a 

J a function of the planing body deadrise angle, taken as 
(2A)tan/S 

K a function of the two-dimensional wedge deadrise angle =» 
C,'/y', or, equivalently, Cs/u-   (see APPENDICES B,C) 

I..;A vertical force on load 

L.M.N moments about the leading edge of the wetted area as de- 
fined in the report 

V resultant perturbed wetted keel length of the planing body 

£jt steady planing wetted keel length of the planing body 

l distance measured from the leading edge of the wetted 
area in the direction of the stagnation line 

N force normal to the planing body 
! LI 

p pressure at any point on the wetted surface of the two- 
dimensional immersing wedge 

. 
*^„ 
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p.q.r angular velocities about the x,   y,   and z axes, respec- 
tively I 

.' 

" o 

V . 

t'H%''2 

5 deadrise angle of the planing body 

S deadrise angle of the associated two-dimensional wedge a 

pitch angle of the planing body about the center of grav- 
ity 

: 

I 

! 

Pa average pressure over a wetted section of the planing body 

p, keel pressure 

pm maximum pressure 

t time 

u,v,w velocities in the *, y,   and z directions, respectively 

V resultant perturbed planing velocity 

Ve equivalent planing velocity of a body whose instantaneous 
resultant velocity is not parallel to the writer surface 

VJ horizontal planing velocity associated with a vertical 
penetration velocity of the p'aning body 

VH steady planing velocity of the planing body 

velocity of the maximum pressure point outboard along an , 
immersing wedge j 

immersion velocity of the two-dimensional wedge 

vertical penetration velocity of the associated two-dimen- 
sional wedge attendant with a pitching angular velocity 

X.Y.Z forces in the positive x,   y,   and z directions, respec- 
tively 

x.y.z coordinate axes fixed in the leading edge of the wetted 
area 

V distance from the longitudinal centerline plane of the 
planing body to the level water intersection point in the 
step plane 

i*' 
o distance from the centerline of the two-dimensional wedge 

to the level water intersection point 

I 

I 

i a angle between the keel and stagnation line on the planing 
body 

al,/3l,yi; direction cosines as defined in APPENDIX B { 

I 
angle between the keel and spray-root line on the planing r 
body A 

I 



\' aspect ratio = L^/Cp,   a function of the trim and deadrise 
angles of the planing body 

\,,/i.,Vj;      direction cosines of the stagnation line and keel of the 
\2,/J2,V2 planing body 

v, r,(t) angular displacements in the reference system as defined 
in the report 

p mass density of water 

In addition to the above symbols, the following notation has been used in 
this report (predominantly in the section on stability): 

G the dot indicates time differentiation of the variable G, 
G  arbitrary 

I 

i • 

II 

I 

u the  bar indicates a perturbation quantity  (i.e.,  G = G — G0) 

G* the   star  refers   to  axes   fixed  in  space   as  discussed   in 
I the  text 

GCG the  subscript CG denotes that the quantity G is either a 
distance  or  a  velocity  of the center  of gravity of the 
planing body relative to a space-fixed set of axes 

G0 the  subscript o   indicates  the equilibrium value  of the 
quantity G 

^T u v *tc      t*ie subscripts r, u,v, . . . ,etc.  denote partial differentia- 
tion of  the  quantity G with respect  to these  parameters 

!. 

THEORETICAL ANALYSIS 

GENERAL CONSIDERATIONS 

In order to determine theoretically the approximate pressure dis- 
tribution and total load on a high-speed planing body, use will be made 
of the following general (and usual) assumptions: 

(1) The fluid is ideal -- inviscid and incompressible. 

(2) The forces due to gravity may be neglected in comparison with 
the relatively large dynamic forces. 

In order to avoid the mathematical difficulties of a complete 
three-dimensional analysis of the flow and pressures in the vicinity of 
the planing body, it is convenient to treat this three-dimensional case 
in terms of its two-dimensional analogue, the immersing wedge. Thus, the 
passage of the pianing body through a stationary plane is taken as being 
equivalent to the penetration of a wedge in this plane. A basis for this 
analogy is apparent if it is noted that there is a marked similarity be- 
tween the flow fields in the spray-root regions of both the planing body 

1 
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PREVIOUS ANALYSIS 

- 

s 
i 
I and the immersing wedge. Additional special assumptions, resulting from 

observation and experimentation, are required to complete this analogy. 
These are: 

) A stagnation line exists on the planing body. This line, which ( 
is defined as the locus of points of maximum pressure on the * 
wetted bottom area of the planing body, is the physical di- 
viding line aft of which the fluid proceeds essentially in the | 
after direction and forward of which the fluid is deflected I 
laterally as spray. 

m 
(4) The fluid velocity along the stagnation line is constant; it is j 

equal to the component of the resultant planing velocity in the 
direction of the stagnation line. 

The existence of the stagnation line is well established. The constancy = 
cf velocity or pressure along it can be verified to a somewhat lesser ex- 
tent if a study is made of available pressure data. § 

I 
The next step in the analogy is to select the orientation of the 

above-mentioned stationary plane in space in which the planing body will 
appear as an immersing wedge. Finally, a two-dimensional theory for the I 
pressures on an immersing wedge has to be selected in order to obtain 
pressure uistriuutions ever tuc &/Ottom ox buc planing uCuy« 

f 

An earlier theory for the pressure distribution and load on a pian- 
ino bodu derived DV the method described above and b**sed on the °ssumrx- 
tions listed on page 5 and above, is presented in Reference 2. Since 
the subject matter of Reference 2 is so closely related to the present in- 
vestigation and since some use will be made of results obtained therein, 
it is considered important to outline briefly the techniques and limita- 
tions of this earlier analysis of the planing problem. T 

In Reference 2, Cue stationary plane of wedge immersion was taken 
normal to the keel of the planing body. The gcneial pressure distribution 
in this plane was then obtained by using two theories, both two-dimen- 
sional. The first of these, based on the analogy in Reference 4 of the 
expanding plate to the immersing wedge, yielded the pressure distribution -. 
from the keel of the immersing wedge to the maximum pressure point. It 
failad, however, to predict pressure;? beyond this point on the wedge be- 
cause the expanding plate analogy fails to predict accurately the free 
fluid surface deformation in the spray-root region. The second theory, 
the spray-root analysis of Reference 5, was used to obtain the remaining -* 
pressure distribution from the maximum pressure point outboard along the 
wetted portion of the wedge, j 

The maximum pressure on the stagnation line of the planing body was 
also evaluated in Reference 2, independently of any immersing wedge ana- i 
logue. This evaluation was made possible by assumption (4) listed on | 

HHU 
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page 6, which gives information on the magnitude and direction of the 
velocity along the stagnation iine. The maximum pressure was found by ap- 
plying Bernoulli's equation between points infinitely far from the sur- 
face and on the stagnation line. With the validity of the maximum pres- 
sure as obtained from this velocity resolution technique accepted, this 
pressure was then expressed in Reference 2 in a form mathematically 
analogous to the expressions for the maximum pressure as derived from the 
expanding plate analogy to the immersing wedge. This expression gave rise 
to the concept of an "effective deadrise," defined to be the deadrise 
angle of that wedge immersing with velocity VR sinr (the component of the 
planing velocity normal to the keel) whose maximum pressure was the same 
as that given by the velocity resolution technique, and whose mathemati- 
cal formalism agreed with that of the expanding plate analogy to the im- 
mersing wedge. Pressure distributions in pianes normal to the keel were 
then Assumed to be given by the combined theories of the spray-root 
analysis and the imrcersing-wedge analysis. In the resulting expressions, 
the wedge deadrise angle was replaced by the effective deadrise angle. 
Total loads were obtained by integrating these pressure distributions 
over the wetted area. 

The good agreement between the theoretically and experimentally 
determined wetted shape of the planing body and the load coefficient 
shown on Figures 28 and 30, respectively, of Reference 2 tends to justify 
the application of a two-dimensional approach to the three-dimensional 
planing case. However, it must be remembered that the usefulness of the 
analysis of Reference 2 is dependent upon the introduction of a fic- 
titious deadrise angle of the immersing wedge; also, the theory of the 
immersing wedge used therein has been superseded by the theory cf Refer- 
ence 1. These facts suggest that an improvement to the analysis of Refer- 
ence 2 might be obtained. 

THE PRESENT ANALYSIS 

/ • 

i i 

In the present analysis, a theory is derived for the pressure dis- 
tribution and load on a planing body, using the methods and assumptions 
listed on pages 5 and 6. The analysis differs from the analysis of Refer- 
ence 2 in at least two respects: (1) the stationary plane of the two- 
dimensional immersing wedge analogy is not selected normal to the keel, 
and (2) the theory of Reference 1 is used to obtain pressure distribu- 
tions in the stationary plane. A discussion of these t»o salient differ- 
ences and a discussion of the assumed flow phenomena in the stationary 
plane are given below. The application of this theory in obtaining local 
pressures, total loads, and stability derivatives of use in a linear sta- 
bility analysis is reserved for later sections. 

SELECTION CF THE STATIONARY PLANE 

In a two-dimensional solution of wedge penetration, the plane of 
immersion is perpendicular to both the keel of the wedge and the maximum 
pressure line. Since the maximum pressure line and keel of the three- 

. .. 
• 

• 

• 
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i 
dimensional planing body are not parallel, it is impossible to select a . 
stationary plane in which the passage of the planing body will appear in I 
all respects as a penetrating two-dimensional wedge. However, since the 
major portion of the load comes from the immediate neighborhood of the 
maximum pressure line for wedge deadrise angles up to about 40°, it may I 
be supposed that any analogy which treats wedge penetration should prefer- * 
ably treat it in planes normal to this maximum pressure line. Thus, inas- 
much as the stagnation line of the planing body is assumed to correspond 
to the maximum pressure line of the immcising wedge in the present analy- 
sis, the planes of wedge immersion are taken normal to this stagnation 
line, which is defined by the planing geometry developed in Reference 2. 
A preliminary attempt to analyze fch« pressures and loads on a planing 
body by treating it as a series of wedges immersing in planes normal to 
the stagnation line was made in Reference 4; the solution was by no means 
completed, however, and the pressures ever the wedge in this plane were 
obtained in the same manner as in Reference 2. 

FLOW PHENOMENA IN THE STATIONARY PLANE 

The reader is referred to Figures 1 and 2 'AAITPQ 40 and 41 ) for the 
following discussions. Figure 1 is a pictorial representation of the 
planing body and embodies most of the essential features and notation re- 
ferred to herein. Figure 2 shows the associated immersing wedge in its 
relation to the three-dimensional planing body as the latter passes 
through the stationary plane, and the notation in this plane. It is 
pointed out that an analogy exists between the flow about only one side 
of the planing bodv, in the stationary plane, and the flow about only one 
side of the immersing wedge. 

I 

THE   TWO-DIMENSIONAL   THEORY   0?   JY. Z   PENETRATING   WEDQE 

I 
The two-dimensional theory of the immersing wedge which is used in 

this report was originally proposed by Wagner (Reference 6), and then 
expanded and carried out in detail by Pierson in Reference 1. This theory 
develops, by means of an iterative process, the shape of the perturbed 
free fluid surface accompanying a wedge penetration, which in turn ». 
leads to the time-dependent potential in the two symmetrical spray-root j 
regions on the two sides of the wedge, and finally to the complete ve- 
locity and pressure distribution over the wedge. This theory of the im- 
mersing wedge has the obvious advantage over the combination of two two- 
dimensional theories used in Reference 2 in that it yields pressure dis- 
tributions over the wedge which are correct (limited only by the accuracy 
of iteration process), within the limits of potential theory. Unfortu- 
nately, this wedge theory is carried out for only a limited number of 
wedge deadrise angles, namely, 20°, 30°, 40°, and 50°, and each of these 
is presented in graphical form. This latter fact leads to the presenta- _ 
tion of results of the present three-dimensional solution in graphical I 
form rather than in closed form. 

I 
I 

i 
I 

In Figure 1, the line of intersection between the stationary plane 
perpendicular to the stagnation line and one side of the planing body is f 

1 
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denoted by K2S, and the line of intersection between the stationary plane 
and the water surface is denoted by K2W. The angle betw««n these two lines 
is called the associated deadrise angle, Pa (see Figures 1 and 2). This 
angle, 0a, is then the geometric deadrise angle of the immersing wedge 
associated with the passage of the planing body as viewed in the station- 
ary plane as defined. The associated deadrise angles as functions of the 
planing body trim (r) and deadrise (/3) angles have been computed by a 
method set forth in APPENDIX B; a graph of /3„ vs. fl for various r ap- 
pears in Figure 3. 

In addition to defining the geometry of the associated wedge in 
terms of the geometry of the planing body, it remains to define the im- 
mersion velocity of this wedge in terms of the steady planing velocity of 
the planing body. The physical condition which permits this evaluation is 
that, to an observer situated in the stationary plane, the passage of the 
planing body stagnation line appears as the traveling maximum pressure 
Doint of the associated immersing wedge. It is then clear that the ve- 
locity of the maximum pressure point out along the wedge is equal to the 
corresponding velocity of the stagnation line in this plane, normal to 
itself along the planing body, This condition becomes more important if 
it is realized that the penetration velocity, and hence the pressure dis- 
tribution over the immersing wedge, may be defined in terms of the ve- 
locity of the maximum pressure point outboard along the wedge. Thus, from 
the geometry of the planing body, the velocity of the stagnation line 
normal to itself in the plane of the body may be determined; this in turn 
fixes, within the limits of the present study, the pressure distribution 

I in normal planes and ultimately the total load. The details of th? com- 
putation which gires the penetration velocity, v0, of the associated 
wedge in terms of the planing velocity, VflI and geometric quantities are 
contained in APPENDIX C, with the resultant expression 

sin/3,, sina 
vo   "   Z Z        VH • (1) ft COST     " n 

where a is a function of the planing body trim and deadrise angles, and K 
is a function of the associated deadrise angle. Both a and K as used are 
defined in APPENDIX C. 

Finally, having obtained the associated deadrise, /3 , and the pene- 
tration velocity, vQ,   the pressure distribution in normal planes is taken 

L , as the pressure distribution given in Reference 1 for the immersing wedge 
of deadrise fia. Since Reference 1 provides pressure distributions for 
deadrise angles of 20°, 30°, 40°, and 50° only, the results must be inter- 
polated or extrapolated to obtain pressure distributions for an arbitrary 
wedge deadrise angle. The total load acting on the planing body is then 
found by integrating these pressure distributions over the wetted area, 
but more will be said of this later. 

; 

SUMMARY 

In the present theory, (1) use is made of the four general and spe- 
cific assumptions listed on pages 5 and 6; (2) the stationary plane is 
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ae lee ted normal to the stagnation  line of the  planirg body;   (3)   the  pisn 
»"«*  bedy  geometry  in.  this  plane  defines  0  ,   the  deadrise  of  the   two- 

! 

I 

dimensional wedge associated with the passage of the planing body through 
this plane; (4) the velocity of the stagnation line of the planing body • 
in this plane is used to determine the corresponding penetration velocity I 
of the associated two-dimensional wedge; and, finally, (5) use is made of 
a single two-dimensional theory (Reference 1) of the immersing wedge to 
obtain pressure distributions in the normal planes and hence the total 
loads on the planing body. 

EXPERIMENTAL STUDY 

Relatively little experimental data pertaining to the chines-dry 
planing of prismatic Vee-shsped surfaces are available. In fact, the only 
extensive chines-dry planing data published prior to the present investi- 
gation were obtained by Shoemaker (Reference 3). Some work on impact 
prior to chine immersion may be treated as chines-dry planing if the ap- 
propriate velocities are used, but even so, relatively little applicable 
data of this type are on hand (see, for instance, References 7 and 8). In 
view of these facts, it was felt necessary to obtain additional chines- 
cLy planing data to corroborate the theory of this report. 

MODELS 

Three Vee-shaped prismatic models having deadrise angles of 10°, 
20°, and 30° were selected from among those used in previous E.T.T. 
tests. Each of the models has a beam of 9 in., a length of 54 in. from 
transom to bow, and an over-all height of 9 in. Further details concern- 
ing the construction and cross-sectional shapes are contained in Refer- 
ence 9. 

TOWING EQUIPMENT 

The tests were performed in Tank No. 3 of the Experimental Towing | 
Tank. The carriage which was used allowed the models freedom in heave 
only. Resistance and pitching moment were obtained from suitable electron- 
ic balances. Wetted bottom configurations were determined from underwater 
phoLOKiaphs, two of which are shewn in Figure 4. The photograph in Fig- 
ure 5 shows one of the models completely equipped for testing. Refer- 
ence 9 gives further information regarding the towing equipment and as- 
sociated test techniques. 

In an attempt to minimize errors in load or drag readings due to 
aerodynamic forces, a large aluminum air screen was towed directly ahead 
of the model, as shown in Figure 5. 

Although usually employed in similar tests at the E.T.T., no turbu- i 
lence-inducing strut was used in the current tests. It was felt that, in 

! 

I 
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view of the small wetted areas to be encountered, too large a disturbance 
of the flow pattern might result from t.^e use of such a turbulence-stimu- 
lating device. 

I 
TEST CONDITIONS AND PROCEDURE 

Each of the three models was run in a straight line on a smooth 
water surface at a constant speed of 24.6 ft./sec, at fixed trim with no 
yaw. The models were free to heave and hence assumed a vertical position 
at which the load on the model was supported by the dynamic reaction of 
the water. For each of the test trim angles r = 2°, 4°, 6°, 8°, 10°, and 
12°, the load was adjusted so that the stagnation line emerged from the 
step plane no closer than 1/8 beam from the chine. In most cases, the 
load was also varied at a given trim in order to serve as a check on the 
computed lo«»d coefficient, C,. 

The following general test procedure was used for a typical planing 
run: The model was set at the proper trim angle and, as the case de- 
manded, loaded or unloaded to the desired weight. The carriage was then 
accelerated to running speed by automatic control. As the model passed 
the underwater camera which was set up to take photographs of the bottom 
planing area, an electric eye arrangement triggered the camera. During 
this time, electronic readings of the drag and pitching moment were taken. 
A visual observation of the towed model indicated at which position the 
stagnation line was emerging at the step and thus suggested what loading 
to use in the check runs. The model was then returned to its starting 
position and the process was repeated for different combinations of load 
and trim. The detailed planing test conditions for each model, together 
with the test results, are given in Table I (pages 38 and 39). 

Despite the precautions taken to eliminate aerodynamic forces, it 
was believed that some*would remain in the presence of the air screen. 
These were estimated by towing the model just off the water surface be- 
hind the air screen, repeating the conditions of speed and trim which had 
beer, investigated with the model in the water. These aerodynamic forces 
and moments were subtracted from the original test quantities to arrive 
at the hydrodynamic forces and moments. 

r 
i . 

n 

111 

TEST RESULTS 

It was hoped, at the outset of the current study, that the test re- 
sults might be presented in the form of lift coefficients and dimension- 
less centers of pressure. However, the experimental techriq-ia that was 
used led to difficulty in the determination of the centers of pressure. 
The computations for the center of pressure depended, of course, on both 
the drag and pitching moment measurements as well as on the lift. This 
dependence unfortunately was in the form of small differences of large 
quantities. Small errors in the large quantities such as pitching moment 
or drag therefore led to sizable errors in the determination of the cen- 
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The maxiinum pressure on the associated immersing wedge can be found 
in terms of the planing body geometry and the planing velocity. The fol- 
lowing procedure will illustrate the use of the various graphs of this 
report in finding this maximum pressure: 

• 

I 
i 
I teis of pressure. For this reason, the presentation of test results is 

limited to the lift coefficient; this is tabulated with the corresponding 
test conditions in Table I and presented graphically in Figure 6. A small 
amount of E.T.T. unpublished data for the case of the 40° deadrise sur- 
face and all of the data from Shoemaker's investigation in Reference 3 I 
are also shown in this Figure. The scatter of the Shoemaker data is indi- 
cated by the boxes surrounding the mean values of C,. 

I On the whole, there is agreement between Shoemaker's data and 
E.T.T. data, but there seems to be some tendency for the E.T=T, data to 
fall higher than Shoemaker's. This difference may be attributed to a I 
variance in the methods used to determine wetted length in each of the \ 
investigations. Shoemaker determined this length from over-water observa- 
tions, and E.T.T., from underwater photographs. The tendency of the water 
to surge forward in a "roll up" along the model bottom could more easily | 
be taken as a longer wetted length in over-water observations than would 
appear in underwater photographs, leading to lower values of the lift co- 
efficient C, as defined in this report. { 

RESULTS AND DISCUSSION 
! 

I COMPARISON OF THEORY *!TH EXPERIMENT 

THE MAXIMUM PRESSURE 

The prediction of the maximum pressure, denoted as pm, is an im- j 
portant aspect of a theoretical investigation of the planing body since 
it is this pressure that gives rise to the maximum local load. It is 
evident from its definition that pm will occur on the stagnation line of i 
the planing body; hence, in the present analysis, it will be taken as * 
being equal to the maximum pressure of the associated immersing wedge. 

I 

) (1) Given the planing geometry (i.e., trim and deadrise angles of 
"I the planing body), the associated wedge deadrise angle, 0a, can be ob- f 

tained from Figure 3, which results from the computations outlined in -* 

(2) Having obtained /?„ , Figure 7 is then referred to for the cor- | 
responding value of ths dimensionless maximum pressure based on penetra- 
tion velocity, P«/£ v0

2.  Two curves appear on Figure 7, one solid and one - 
dashed. The dashed one results from the expanding-plate analogy solution of ; 
the immersing wedge (Reference 4) mentioned previously, which is a closed 
form expression for pm/-fy vQ

2  vs. wedge deadrise angle. The solid curve is 
faired through the values of pm/f- v0

J taken from Reference 1; it »8S ex- I 

I 



trapolated to /?  = 10° by a qualitative and quantitative comparison with 
the dashed curve. 

(3) Finally, the relationship of equation (1), shown graphically in 
Figure 8, allows for the evaluation of the dimensionless maximum pressure 
based on planing velocity, pm/-fy  Vft

2. 

A resultant graph of pn/-f Vfl
2 vs. r, obtained by following the 

above procedure, is shown in Figure 9 for four planing bodies having 
deadrise angles of 10°, 20°, 30c, and 40°. 
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Another theoretical method of determining pn/-f VR
2 for any planing 

condition is discussed in the section of this report entitled PREVIOUS 
ANALYSIS. In this method, the maximum pressure results from an applica- 
tion of Bernoulli's equation between points at infinity and on the stag- 
nation iine of the planing body (Reference 2). The resultant expression 
so derived ia 

$VJ 
= sin'r 

(K -  sin2/3>2 

sin2£ + K2tan2r 
+ cos2/5 

\ 

: i 

i i 

where all the symbols are as defined herein, K  being defined in APPENDIX B 
as a function of the planing body deadrise angle, /3. 

The only experimental data available on the maximum pressure cf a 
planing body are contained in References 7 and 8. These data are actually 
the result of landing tests performed on bodies whose instantaneous re- 
sultant velocity had components parallel and normal to the water surface. 
The equivalent "planing" velocity for the case of landing has been de- 
fined as the resultant horizontal velocity of the stagnation line. Thus, 
ifx and z are used -o denote the components of the instantaneous re- 
sultant velocity of the body in directions parallel and normal to the un- 
disturbed water surface, respectively, the equivalent planing velocity, 
Ve, is given by 

I 
! !" 

tanr 
(3) 

The test results of References 7 and 8 have been summarized by the em- 
pirical relation 

/ 

iv. 
, /      1 

— = sin'T j   
2        \sin2r + ,, J*COS2Ti 

(4) 

where the quantity designated J is a function of the deadrise angle. Only 
two values of J have been determined experimentally -- one each for body 
deadrise angles of 22lA° and 30°; however, in Reference 7, it is pointed 
out that the asymptotic behavior of J as a function of $,  for small B,   is 

* Equation (22) of Reference 2. 
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J = — tan/3   . (5) 
77 

For the purpose of comparing the maximum pressure coefficient given by 
equation (2) with that given by equation (4) and the one developed in the 
present report, it was found convenient to use this definition for J 
throughout the range of /3 considered. Only slight discrepancies exist be- 
tween this definition and the experimentally determined values of J, as 
can be seen on Figure 10. 

For each landing condition of the bodies tested and reported in 
References 7 and 8, the model penetrated the water to various depths. The 
fact that equation (4) above is independent of depth is an experimental 
indication that no significant variation in peak pressure occurs when the 
body passes from the chines-dry to the chines-wetted condition. There- 
fore, it may well uc a-ssuineu that the pressure distribution in the ±!u- 
mediate vicinity of the stagnation line as theoretically developed in 
this report for the chines-dry planing case is also applicable to this 
region whes. the chines are wetted. 

Figure 9 shows a comparison of the maximum pressure coefficients 
given by equations (2) and (4), and the theory developed in the present 
report, throughout a practical range of trim and desdrise angles. In 
general, the agreement among them is good. However, the values of the 
maximum pressure coefficient given by the three methods tend to diverge 
at high trim angles. This is to be expected since different limiting 
values of the maximum pressure coefficient are predicted by the three 
methods as the trim angle of 90° is approached. Since the change in the 
maximum pressure coefficient with trim angle is not rapid for large trims 
(30° < r < 90°), the limiting value at 90° trim will affect the values at 
other high trim angles. The empirical equation (4) predicts a maximum 
pressure coefficient of unity at 90° trim angle; equation (2) predicts 
that this coefficient will approach cos2/G at this trim angle; and the 
present theory is forced to leave the value of this coefficient undefined 
at this limiting condition inasmuch as values of /5Q approach 90° with the 
trim angle and no asymptotic theoretical values of the maximum pressure 
coefficient for high deadrises are available. 

THE LIFT COEFFICIENT 

The lift, L, in the upward direction perpendicular to the undis- 
turbed water surface is given by the product of the average pressure over 
the wetted surface of the body and the area of this wetted surface pro- 
jected onto the undisturbed water plane. Thus, before a theoretical deri- 
vation of the lift coefficient can he completed, the magnitudes of the 
average pressure and the projected wetted area must be determined. 

In order to determine the average pressure on the surface of the -\ 
planing body, it is first necessary to establish the correspondence of 
the two-dimensional pressure distribution over the associated immersing . 
wedges with the pressure distribution over the entire wetted portion of j 

^ 

. 
• 



the planing body. To this end, the reader is referred to Figure 11, a 
plan view of the planing body. Shown on this Figure are typical sections, 
A-A ard B-B, taken normal to the stagnation line of the planing body, in 
which Jhe pressure distribution is assumed to be the same as that on on* 
side oi an immersing wedge. In a section such as B-B, which does not 
inter °ct the keel of the planing body, the step of the planing body is 
taken o correspond to the keel of the immersing wedge. This assumption 
is coi enient in practice since it insures that, once the average pres- 
sure in any section normal to the keel has been determined, it will be 
constant for all such sections, and that (providing /5 <40°) the pressure 
QiSv'. xDucxon over tu6 s^cp Ci uuS pJLsnin^ *^ooy w*xx*. *>s constsnv auu 5 
miniir^m (see section C-C of Figure 11), which approaches the true case. 
It is understood, of course, that, in reality, the pressure quickly drops 
to zero at the step. This drop, however, affects only a small part of the 
comp'-ite pressure distribution and is neglected in the present work. 

Having set up a correspondence of the two-dimensional pressure dis- 
tribution of the immersing wedge with the pressure distribution over the 

•* planing body, it now remains to evaluate the average pressure from these 
pret iiir* distribut-iona. To do this. th« nre~sur? distribution curve* for 
the immersing wedge which are reproduced from Reference 1 in Figure 12 

i for various deadrise angles must be integrated over the wetted width. It 
will be noCeu from this Figure that these curves extend out to values of 
Y*, the distance from the wedge centerline, greater than C_', the dis- 
tance from this centerline to the spray root (see Figure 2). However, in 
vicv of the fact that the theoretical expression for the distance C ' is 
so *imple and relatively well established, it was decided to define the 
weighted average pressure coefficient as 

i 
i 

Pa 1.2 C 

±f  ' P^*L-du>   . (6) 
£. 2        Cp'J -£„ 2       ' 
2 vo p   °   2 vo 

I- order to define the lift, this weighted average pressure is then ap- 
pi.fd to the reduced wetted area delineated by the keel and spray-root 
Ixuas of the planing body. In this manner, the total force is included, 
J J- it is assumed that it acts over a slightly smaller wetted portion of 
i-hj planing body than exists in reality. A curve of p0/-f- v0

2 vs. £a fitted 
h-ough four points as computed by the above procedure is presented 

%n Figure 13 (solid line). This curve is extended to a deadrise angle of 
''" ' by comparing the average pressures obtained above with those obtained 

the combined two-dimensional theories used in Reference 2 (the dashed 
. rve of Figure 13). This method is analogous to the procedure used to 
extend the maximum pressure coefficient curve of Figure 7, as discussed 
— „~   19 

j- j | An  expression   for   the  wetted  area,   A       delineated   by  the  keel, 
step, and spray-root lines of the planing body projected onto the plane 
of the undisturbed water surface is found with reference to Figure 1 to 
be 

- - 
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Ap   « LkCp  COST       , (7) 

where  Ljt represents  the wetted  keel  length OK of Figure  1  and C_  is the 
wetted half beam.   But  from equation  (15)  of Reference 2, 

77 tanr 
f      —   f .    • — t o\ 

£. Cttlip 

therefore, 

Having determined the average pressure and the projected wetted 
area, expressions for the lift and finally the theoretical lift coef- 
ficient can now be  given.  The  lift  is defined as 

l - Pa*p       , (10) 

and the lift coefficient based on planing velocity and wetted keel length, 
as in Reference 2, is 

C, -    . (11) 

7 ". V 

I 

I 
! 

I 

I 
Tf B1 TIT" ? 

/Ip'^V^  . (9) I P      2    *    tan/5 * 

: 
A comparison graph of the values of A /L^2 determined from the 

underwater photographs of the present experiments and those which result 
from equation (9) above appears on Figure 14- The differences between 
these values may be attributed directly to the differences between the -r 
observed and predicted values of the rotted semi-width, Cp, which result 
from the rapid loss of pressure in the region of the step and subsequent 
bendin" toward the ksel of the stagnation line in thi* recion (see. for 
example, Figure 4, where th« represented test conditions approach extreme 
values of tl.e planing parameters). Thus, by substituting the observed 
values of C into equation (7), a considerably smaller value for Ap/L^2 

results than if use were made of the values of C predicted on the oasis 
of the assumption that there is no curvature of the stagnation line. It 
is pointed out, however, that the true value of the wetted area defined 
by the observed stagnation lines and step differs from the theoretical r 
value in the vicinity of the step only. This is a consequence of the fact 
that the observed stagnation line is essentially straight and, except in 
the step region, is in the predicted location. This small difference will 
be neglected in the succeeding development. 

r 
i 

] 

i 
Substituting the right-hand side of equation (9) into equation (10) and 
the result into equation (11) gives j>- 

_£i_*ii!vr 
1      p       .2 tan/S 

• - 

• .'•• 
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Since the associated wedge penetration velocity, vQ.   is related to 
». • •*_     ^AUMAHQ      .WAvrtriAVy,       'at      WJ     GUUd^x v/ll      V •*• / t        ***»**••     %»\4«A«A%.*V...      \  X 4. /      bail     alOU     UC 

written as 

Ci 
P.i     /fl sinr\ /sin/L   sinaV —±_ [ _ .II—   ][ 2  ] (13) 

£      2\2  tan/?y Y    * cosr     / 
9 v,. 

The quantity /><,/-£ v0
2, plotted vs. wedge deadrise angle, appears on 

Figure 13; values of (77/2)(sinr/tan/3^ are given on Figure 15; and values 
of sin/5a sina/ft COST, the velocity ratio, can be found on Figure 8. 

The theoretical values which result from equation (13) appear on 
Figure 6 for comparison with experimental data. The theory predicts well 
the type of variation of C, with trim and deadrise angles but there is a 
tendency for the magnitudes of CL predicted by the theory to be slightly 
greater than those measured. This is, cf course, not surprising inasmuch 
as the theory does not take into account the. edge pressure losses exist- 
ing on the true planing body in the vicinity of the step. 

THE LIFT COEFFICIENT IN TERMS OF ASPECT RATIO 

It has been pointed out in the development of the theoretical lift 
coefficient that the results can be presented in graphical form only -- 
a consequence of using the theory of the immersing wedge of Reference 1, 
For certain applications of the theory of lift on the planing body, it is 
convenient to have on hand a closed analytic expression for the lift co- 
efficient. The desirability of such an expression has prompted the de- 
velopment of the following empirical expression for C, as a function of 
the planing geometry. 

A significant single quantity defining the planing geometry is the 
wetted length-beam ratio, V , defined to be the ratio of the wetted keel 
length, Lk , to the mean wetted beam, Cp, of the planing body. This con- 
cept is a familiar one to both designers and investigators and is there- 
fore selected as a basis for the development, of an empirical expression 
for CL. 

An expression for X in terms of the planing body trim and deadrise 
angles follows from its definition and from equation (8) to be 

i   2 tan/5 
X   • (14) 

77 tanr 

It was found that, by plotting C, vs. X cos2/S, the theoretical and 
experimental values of CL for the various deadrise and trim angle combina- 
tions considered on Figure 6 of this report could be adequately collapsed 
onto single curves, one theoretical and one experimental. Figure 16 
shows the results of such a plot. Only the mean line is shown through the 
relatively small scatter of points obtained by plotting the theoretical 

~r" 

R^92 
-17- 



-18- 
I 
[ 

values. An empirical equation which represents the experimental relation- t 
ship between C,   and V cos2/3 was obtained by fitting a straight line to 
the experimental data points on Figure 16. This equation, 

0.151 

THE STABILITY DERIVATIVES 

• 
m   _JL^L__ (15) 

fX'cos'/S,)2-7 

represents the data with sufficient accuracy in the range of C, from 
0.0006 to 0.1. No experimental data which result in CL values less than 
0 0006 are available, but it is anticipated that the empirical expres- 
sion wiii adequately represent these high deaririA*, low trim angle plan- 
ing cases. For CL greater than 0.1. the empirical curve does not agree 
with the experimental results; however, these C, values correspond to the 
low deadrise, high trim angle planing cases ana are not usually of prac- 
tical interest. The planing phenomena associated with C, greater than 0.1 
are those which have been noted before to cause difficulty of analysis 
because of the high pressure gradient in the vicinity of the step, and 
the associated reduced wetted area. Some use of the above empirical rela- 
tion will be made in the succeeding section on the stability derivatives. 

: 

There is, in the literature, a relative lack of analytical expres- 
sions for any of the stability derivatives which may arise in a stability 
analysis of the porpoising of a chines-dry planing body. A logical appli- 
cation of the theory derived in this report to a practical pianing problem 
would therefore be in the development of analytical expressions for these 
derivatives, as shown below. Only the hydrodynamic derivatives result- 
ing from the lift force will be discussed. No consideration will be , 
given Lo the derivatives arising from either aerodynamic forces or drag j 
forces nor to the questions connected with the solution of the equations. 
The derivatives to be developed will have immedi-ate application to any 
linear stability analysis of the chines-dry planing body which may sub- 
sequently be made. f 

f 
In the standard linear stability analysis, such as the one pre- 

sented in Reference 10.. axes are fixed in space with the origin located 
instantaneously at the center of gravity of the planing craft. Two 
coupled equations of motion are written which express the equilibrium of 
forces in translational and in rotational acceleration. All terms are 
usually referred to the translation of the C.G. and to the rotation of 
the body about the C.G. The evaluation of the necessary stability deriv- 
atives in such a system is somewhat complicated by the fact that a simple 
motion may have several effects (i.e., a rotary pitching motion about the -* 
C.G. results in uoth a change ox wetted leiigtn unu a chang? in tne angle 
of the keel relative to the undisturbed water surface). I 

. i 
The reference axes chosen for the present application of the theory 

are fixed in the body at the intersection point of the keel with the un- 
disturbed water surface, at the trim and heave of equilibrium (see Figure J 

'.! 

• 
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17). With this axis system, the stability derivatives take on a particu- 
larly simple form, thereby eliminating the possibility of overshadowing 
the underlying principles by the mass of algebra entering with the inter- 
action effects referred to above. 

Figure 17 shows the space-fixed (x*,z*) axes u*ed in a standard 
porpoising stability analysis and the body-fixed (x,z) axes used in the 
present analysis. The planing body is shown in its equilibrium state and 
in a perturbed state, APPENDIX D contains the necessary transformation 
equations which give the applicable stability derivatives in the (x*,z*) 
system in terms of those in the (x,z) system which are derived below. 

The general reference system for the current analysis is set up as 
follows: 

1 i riuor Hi QHAQI fi nn X y z 
Designation longitudinal lateral normal 
Positive Direction forward starboard downward 

Linear Velocity u V V 

Force A' Y Z 
Angular Disposition V T CO 

Designation roll trim yaw 
Positive Direction y - z z - X x  — y 

Angular Velocity P 9 r 
Moment L M N 

Here, ^or^oising is regarded as a coupled motion of pitching and 
heaving of the planing kody in the x;z-plane; hence, only the 2-force and 
M-moment are of interest. Also, surging motion is considered as being un- 
coupled and will not be introduced (justified in Reference 10). Z and M 
are considered to be functions of 2, r, u>, and <j which, subsequent to a 
perturbation from equilibrium, can be expressed in a linearized Taylor 
Series expansion as 

Z = Z0   + Zj  + ZTr  + Zww  + Zqq (16) 

M  - M0  + Mzz  + WTT * MWW  + Mqq (17) 

where all derivatives are considered to be constant and are to be evalu- 
ated at equilibrium. The first (zero subscript) terms on the right-hand 
side of the above equations denote the equilibrium values of the Z-force 
and M-moment. The bar terms represent perturbation quantities (e.g., 
T = T — TQ). The remaining terms (Z,, Mw, etc.) are partial derivatives 
*i*• h respect to the subscript Quantities. This subscript notation should 
not be confused with the usual subscripts used to designate the nature of 
a parameter, as for instance, L^, CL, C„, etc. Linear perturbation quan- 
tities are measured relative to space-fixed axes, taken conveniently as 
the initial position of the present axes immediately prior to a disturb- 
ance from equilibrium. Angular perturbations are taken about the origin 
of the axis system. The W-moment is measured about the instantaneous po- 
sition of the leading edge of the wetted area. 

• 

• • 
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The above derivatives will be evaluated in terms of the equilibrium i 
planing geometry, and the theoretical equilibrium forces derived in the j 
present report. Again, it is to be emphasized that the practical applica- 
tion of these particular derivatives to a stability analysis must be car- 
ried out in an axis system which treats the motion of, and about, the C.G. 
of the planing body. ' 

I 
except Z    to express the  instantaneous vertical  force,  Z,   in terms of the [ 
dimensionless  lift coefficient,   CL,  as i 

Z-FORCE   DERIVATIVES 

It will be convenient  in  the evaluation of all Z-force derivatives 

Z - -•£ (L'^V^t       , (18) | 

which  is  valid  for  any  purely  translatory motion  (i.e.,   9*0),   where 

p     is   the   mass  density  of water, 1 

V    is   the   instantaneous   perturbed   planing velocity  (equilibrium 
value       V.), | 

L     is    the   instantaneous   perturbed  wetted   length   (equilibrium 
value  = Lfc),   and 

O.   is tz^e   lilt ccc.iicicrit,   constant  .or  a given  planing  HcOuictrv. 

The Z-force derivatives are  discussed below  in  the  order  in which they 
appear   in equation   (16). 

as 
The vertical force change with change in depth, Z., is expressed 

Zz  = ZLL'Z  + ZCL(CL)Z (19) 

(subscript  notation  is  used  and all derivatives  are  to be evaluated at 
equilibrium).   Equation  (18)  may be  used  to evaluate ZL» as 

2t<= -P*n LkCL ~TZ° (20) 
k 

Next, from Figure 17, it is clear that 

(V- LQ)ainr  = z   , (21) 

where L'   represents the instantaneous wetted length of the body, and LQ 

the equilibrium value, which is equal to L^,  Hence, 

L'    «-4—  . »>22) 2   sinT0 

I 
i 

I 

I 

! 
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In equation (13), the lift coefficient, C,,   is shown to depend only on 
the trim angle for a given planing body deadrise angle; thersfore, 

(C,)z  - 0   . (23) 

Substituting equations (20), (22), and (23) into equation (19) gives 
finally 

Lttsxnr0    ° 

: 
The vertical force change with change in trim angle, 2T, is given 

by 

ZT =° ZL,l.'T  * ZCL(CL)T        . (25) 

From equation (21), the equilibrium value of L'T  is shown tc be zero. Zc 

may be evaluated from equation (18) as 

"c, ~T~      • K*°' 
t 

The value of  (CL)T is  obtained from the empirical relation,   equation  (15), 
as 

/r   \     -    ZZ-*  n mn\ 
- sin IT      L 

0 

so that, finally, substituting equations (26) and (27) into equation (25) 
yields 

• i 

I 

5.4 
- z.  . 128) T  sin 2r0 ° 

The vertical force change with change in vertical velocity, Z , 
will be derived below* following a brief outline of the approach taken in 
its development. 

The effect of vertical velocity on a planing body at a given trim 
angle may be treated in terms of its equivalent effect on the horizontal 
motion of the stagnation line or planing velocity. This has been demon- 
strated in the derivation of equation (4). Thus, a vertical velocity of 
magnitude w   gives rise to an incremental planing velocity of magnitude 

V. =    , (29) 
tanr 

: r 
yielding a resultant planing velocity 

v = vR * Vi  - v, tanr 
(30) 

___ 
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Since the planing velocity or, equivalently, the velocity of the stagna- 
tion line has played such an important role in the theoretical determina- 
tion of the loads and pressures on a planing body (see, for instance, 
APPENDIX c), it was decided to treat the change in 2-force with vertical 
velocity in terms of the change in Z-force with planing velocity. Thus, 

zw  * zvv»  + zc   <
C

LK     • <31> 

where (CL)V is zero since it is evaluated at constant wetted length-beam 
ratio, X' , and by equation (15) is independent of v. Finally, using equa- 
tion (18) for 2V *nd (30) for Vw  gives 

z. - (-py,Li*GL) -±- - TTT^-   ' (32) 
*      " " «•  tanr(,  K^tam-g 

The vertical force change with change in angular velocity, Z_, can- 
not be treated in a manner analogous to that used for the other deriva- 
tives since the expre««ion for 2 (equation (IS)) ia no longer valid. Tula 
is a consequence of the fact that, for the case q f 0, the instantaneous 
perturbed planing velocity, V, is indirectly a function of the distance 
between a section of the body and the leading edge of the wetted area. 
The direct dependence of 2 on q is in the penetration velocity of the as- 
sociated wedges in plsnes normal to the stagnation line. Accordingly, for 
i.h* s.•••-.s* <j *0, theds*. ,.tive with respect to q will have to be approached 
b>" £_ method which takes into account the variation in conditions frsas 
one such section cf the body to the next. This latter method involves 
setting up expressions for the contribution to the total 2-force by an 
arbitrary narrow slice of the planing body in a section perpendicular to 
the stagnation line, differentiating it with respect to q, and finally 
integrating over the entire wetted portion. 

An incremental slice of the wetted bottom of the planing body normal 
!to the stagnation line defines a wedge. Relationships have been estab- 

lished for the associated deadrise angle, $a, and for the average pres- 
sure coefficient, Pa/-f v0

5, of this wedge. These quantities are invariant 
with respect to q since they are both geometrically determined and inde- 
pendent of velocity. Therefore, with re£ereuu« to Figure IS, the follow- 
ing relations are established for the incremental lift forces, d21 and 

| dZ2,   contributed by the one-sided wedges in such sections: 

dZl  = 
Pa    -  vs

2tana co&/3a£d£ (0 < I < Lk  cosa)  (33) 
2 

O 

dZ2  = -^—4 vs*(Lk 
seca -ijeota cos/3a dt 

wh»re 

 =  i/.   |u  seca - *;cota  cosp„  a* t 

* V° (Lk cosa < i  < Lk ae'ea)   ,   (34) 



; 

Ji    is the distance between a section of the body and the leading 
edge of the wetted area measured along the stagnation line, and 

vs  is the resultant penetration velocity of the equilibrium maxi- 
mum pressure point in this section (see following discussion). 

It may be noted on Figure 18 that u has a varying effect on the 
wedge penetration velocity ir a section normal to the stagnation line. 
Thus, the keel of the wedge, being at a greater distance from the axis of 
q, has a greater induced penetration velocity than other points on the 
wedge. It is arbitrarily assumed that this variable penetration velocity 
along the wedge may be replaced by a constant penetration velocity equal 
to the resultant vertical velocity component of the equilibrium maximum 
pressure point on the wedge subsequent to q. This assumption is founded 
on the premise that the flow in the vicinity of the spray-root area of 
the wedge is the controlling factor in a determination of loads. Thus, 

vs  - v0 + q&  cosa   , (35) 
i: 

where vc is the equilibrium penetration velocity associated with planing 
(see equation (1)). Substituting the right-hand side of equation (35) 
into equations (33) and (34), and then evaluating the darivativea with 
respect to q  at equilibrium results in 

t - 

(dZx)    - p     Ps     vc£2 sina   COSP0 a* (36) 
£... i 
2 vo 

and 

Pa /)   COS   O (dZ2)q - p vj -I-- (Lk Mca -l)coa0a it      . (37) 

Tvo2 

Finally, after considerable computation, Z„  is found from 9 

,/,. cosa .Llieca 

Zq   =• 2j   "       (dZx)q   +  2j (dZ7)q (38)' 

to be 
l. cosa 

z'VL/!l\(1(t.Wf^ . (39) 
"?  3 Vy:osT0 -v v0 \cospJ 

In the derivation of equation (39), the following definition of the equi- 
librium Z-fprce has been used: 

Zo  - PaLkc
P  COST  • (40) 

* Tha   factor   2   enters   by   the   syaaetry   of   slices   OD   both   sides   of   the   plsnisg   body. 
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M-MOHENT  DERIVATIVES 

It is necessary to establish expressions for the incremental mo- 
ments, dW. and dM., about an axis through the leading edge cf the wetted 
area and parallel to the y-axis, which are contributed by slices of the 
wetted portion of the planing body normal to the stagnation line. Re- 
ferring to Figure  18;   these expressions are as  follows: 

and 

M -f dUi  + f dM3 

0 t'coia 

s 
I 

The significant physical considerations used in establishing the sxpres- { 
sion for Za  are (1) the total lift: on a planing body may be treated as a * 
summation 'of effects which occur in sections normal to the stagnation 
line, (2) the average pressure coefficient is a geometrically determined 
constant which is independent of q,   and (3) the resultant motion of the 
equilibrium maximum pressure point in sections normal to the stagnation 
line is assumed to determine the motion of the entire section. 

! 
t- 

: 

In order to evaluate the required moment derivatives with the ex- 
ception of M„, an expression must be developed for the moment about the 
instantaneous leading edge of the wetted area in terms of the instantane- 
ous wetted length, L', and the instantaneous Z-force. This expression 
will be based on the lift theory developed in this report and will be 
true  for any purely translatory motion  (i.e.,  q  • 0). 

dUx   - (0.4./ tana sina + lco&a)dZx (0 < £ < L'cosa) (41) 
.1 

dM2   »  (0.6i  cosa   +  0.4   L')aZ2 (L'COBU.   < £ < J/'seca)     .   (42) 

The quantities multiplying dZx and dZ2 are respectively the distances 
from the moment axis to the center of pressure in the normal sections for 
(0 < H < L'cosa) and (L'cosa < .*' < L' seca). From Figure 12, the center- 
of-pressure location on the wedges in these normal sections was found to 
be approximately 0.6 Cs' (see Figure 18) for values of 0a from 20° to 40°. 
Little significant variation from this value is expected for other rea- 
sonable values of /5Q. The total moment, M,   is r 

(43) | 

Substituting the values of dZ1  and dZ2  obtained from equations (33) _ 
and (34) into equations (41) and (42), inserting the result into equa- 
tion (43), and integrating gives 

M *-~Fx(a)L'Z (44) [ 

as the expression for M  in terms of the instantaneous wetted length and 
Z-force, where .1 

F,(a)   - cos2a(0.4 sin'a + cos2a) 

+ csc2a(0.6 cos6a - 0.3 cos*a  1.2 cos2a + 0.9)  .  (45) .| 

I 
! 
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The variation of F1(OL) with a, the angle between the stagnation line and 
keel of the planing body, is shown in Figure 19. It is seen that the val- 
ue of Fi(a)  • 1 is valid for all practical purposes; therefore, 

W-j£'Z   . (46) 

This two-thirds value has been experimentally verified by some previous 
landing tests of Vee-bottom surfaces prior to chine immersion (Refer- 
ence  11). 

From equation (46), the moment derivatives Mz, Mr, and Mv are 
easily obtained in terms of the corresponding Z-force derivatives and 
subsequently in terms of the equilibrium planing geometry and 2-force. 
These derivatives are discussed below. 

The pitching moment change with change in depth, Mz , is expressed 
as 

2   .   _ 2 
3      •   "        3 

which becomes, using equation (22) for L'T, 

u    - 2 r -  ,  22° 'A- 

Equation (24) is used to express Zz in terms of the equilibrium Z-force, 
Z0.  Thus, 

2zo 
Mt  « —2- (49) 

! z   sinro 

The pitching moment change with change in trim angle, MT, is given 
by 

MT  -jLkZT +JZ0L'T . (50) 

As previously shown (page 21), L'T   =0. Finally, using equation (28) to 
i obtain ZT in terms of Z0   results in 

M  = h^— L,7 KU 
T  sin 2r0 ~«~° 

The pitching moment change with change in vertical velocity, Mw,   is 
given by 

,, K=\^»+\loL\      • (52) 

- - 
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wh*re 

+ cos*ad.25 8in*a - 2.4) + 1.4]   . (57) 

A plot of Fx (a) vs. a is shown on Figure 19. 

REMARKS 

(1) With the exception of Z,. and MT, the above derivatives have 
been expressed in terms of the theoretical equilibrium lift force, which 
can be obtained once the deadrise and trim angles of the body are known. 

CONCLUDING HEMARKS 

-  . •' 

I 

At equilibrium, L'w   =0. Zv  is obtained in terms of Z0  by using equa- 
tion (32). Hence, 

1, . -JSt-l0 (53) 
•  3V,tan-0 ° 

The pitching moment change with change in angular velocity, Mq, 
must be treated in a manner analogous to l„ inasmuch as equation (45) is 
no longer valid for rotational motion. Knowing this, the expression* for 
cMfj and dM2 «M»st be first differentiated with respect to q and then inte- 
grated over the wetted area to obtain M„. 

The following derivatives may be obtained from equations (41) and 
(42): 

(dMl)q   - fO.4j0v.ana. sina + i cosa) (dZl)q (54) 

(dMt)q  - f0.6ic.oaa + 0.4 Lk)(dZa)q  . (55) j 

Finally, after the expressions for (dZ,Jq  and (dZi)q  evaluated at equi- 
librium are inserted into equations (54) and (55) and the resultant ex- r 
pressions are integrated over the wetted area, the result is                      [ 

»,. w/i\,,,.,(~^   , (M) , 

' 

iV„coa-T0 \ v0J    * \  cosp 

f 
F.(a)   - csc2a[1.8 cos8a +  cossa(3 sin2a - 0.8) i 

i 
A summary  of all  the  stability  derivatives derived  above   is   pre- t 

sented  in Table   II.   The   following are   believed  to be   the  significant 
factors distinguishing this  analysis  from any other: 

[ 

| 
(2) The theory has allowed for the evaluation of all the derivatives 

with full cognizance being taken of the variation of CL with the quanti- 
ties z,  v,   r,   and q. [ 

A theory of the pressure distribution and load on a three-dimen- 
sional prismatic planing body has been developed in this report, subject . 
to the usual assumptions regarding the flow about the body, which are: j 

i 
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(1) The fluid is incompressible and inviscid. 

(2) The gravity forces may be considered negligible in comparison 
with the dynamic forces of the fluid. 

The proposed theory treats the flow about the planing body in planes per- 
pendicular to its stagnation line to be equivalent to the two-dimensional 
flow about an immersing wedge. In this way, the present study derives 
pressure distributions in sections of the body perpendicular to the stag- 
nation line, and total loads acting on the body over a wide range of plan- 
ing conditions. Additional special assumptions were required to treat the 
three -dimensional nlaninff csse in terms pf a corresDonding two-dimension- 
al theory. These are: 

(3) There exists, on the pianing-body bottom, a stagnation line 
which is defined as the locus of points of maximum pressure. 

(4) The flow along the stagnation line has a uniform velocity which 
is the component of the freestream velocity in the spatial di- 
fee i-1 Oil ui LUG SbagnaiiCn :ill£. 

All the assumptions appear reasonable on the basis of the good agreement 
found between the theoretically predicted and measured maximum pressures 
and planing loads. 

The results of this study are presented for the most part in graph- 
iCoi IOIUI oiuC6 tuc ti»corv o± t**s tVrG-iiXuisnsicna.1 penetrating wedss wnicn 
was used is available in this form only. The graphs include theoretically 
determined variations of both the dimensionless maximum pressure, based 
on planing stagnation pressure, and the lift coefficient, based on wetted 
Iraal      1 Ansfk nUnino    v* Inri t-v an/4     T 1 ll4 fl     flftRM ttV        iii-it-h     ••h**     ff*nm»^r>i r «*WWA      A.W*»Q~.-,       g**«****...Q       .w«>^w«.»y   ,       v».«U      iiUlU      UCU9ii>)   ,       R&wii      «.UC      Q w *»...<—«.• _l» 

planing parameters of trim and deadrise angles. The maximum pressure co- 
efficient compares well with experimental data obtained from landing tests 
of planing bodies with deadrise angles of 225^° and 30° over trim angles 
ranging from 0.2° to 30°. The variation of the theoretically predicted 
lift coefficients with body parameters shows good agreement with the mea- 
sured variation over the ranges 10° < £ < 40° and 2° < r < 12°. The mag- 
nitudes of the theoretical lift coefficients are slightly greater than 
the measured ones. This may well be expected since the theory does not 
accurately reproduce the loss of pressure, or local ioad, which is be- 
lieved to occur at the step of the planing body. 

The results of the theory are in a generally applicable form as 
demonstrated by the development of stability derivatives which can be 
used in a linear porpoising analysis. The physical picture of the planing 
body afforded by this theory will be useful in future design and analysis 
work of planing bodies. 

.- »> 
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DERIVATION OF THE ASSOCIATED DEADRISE ANGLE 

' IN TERMS OF THE PLANING BODY GEOMETRY 

The task of deriving an expression for the associated deadrise 
angle in terms of the trim and deadrise angles of the planing body there- 
tore becomes simply a problem in geometry. The axis system ia fixed at 
the leading edge of the wetted area, with the x-axis positive in the di- 
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APPENDIX B | 

i 
f 

The associated deadrise angle haa been defined in the text} as the 
deadrise angle of the two-dimensional immersing wedge associated with the 
passage of a planing body through a plane which is stationary in space 
and oriented normal to the stagnation line of the body. In the present 
derivation, this is the angle made between the line, of intersection of 
the stationary plane and the body surface, and this plane and the water 
surface. 

0 

0 

I 
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rection of motion, the z-axis positive vertically downward, and the y-axis 
positive to starboard. With the direction cosines of the upward direction 
of the stagnation line on the starboard side of the planing body and the 
keel line denoted by (kl,pl, v.) and (\2, Mj, v.), respectively, the 
quation of the planing surface bottom on the starboard side may be writ- equa 
ten as 

^2 

* + 

' z 2 

(B-l) 

The equation of the plane normal to the stagnation line on the starboard 
side and passing through the origin is 

\jx + Mi* + vi*   " 0 

and the equation of the water surface is, of course, 

z - 0  . 

(B-2) 

(B-3) 

A set of direction numbers for the upward direction of the line of 
intersection between the plane normal to the stagnation line and the 
plane of the bottom is obtained from equations (B-l) and (B-2) to be 

-u. 0 

•M 

v, 

r' I 

X, -v, 0 0 

v, 

Mi 

k* 

Mi 

^2 

(B-4) 

The starboard-side direction of  the   line  of  intersection between  the nor- 
mal  plane  and   Liic   ylaiic  of the   ~ater  surface  has   the  direction  numbers 

(Mi   .   -X,    .   0) (B-5) 

With  the direction cosines  associated with the direction numbers   in  (B-4) 
and  (B-5)  denoted  by   (a1(   /fij,   y x)   and   (<x2,   /5?,   y2),   respectively,   then 

cos/3a   = axa2  +  $l02 + y]y2     , (B-6) 

where J3 is the angle between the lines of intersection of the normal 
plane with the body and with the water surface and is therefore the de- 
sired associated deadrise angle. Using the expressions given by equations 
(13a), (13b), and (13c) of Reference 2, corrected to the starboard side 
for (\, , Mil vi)> ancl using (COST, 0, -sinr) for (X2, M2 • vi)   results in 

(K - sin2/6)/sin£ 
ai  " 

[(l/sin2r) +   (K2/sin2/S cosaT)]X 

•• 
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cos/3/sinT 

[(l/sin2T)  +   (K2/sin2/i COS2T)]* 

y i 
-(K tanr/sin/5 +   sin/G/tanr) 

[(l/sin2T)  +   (K2/sin2/? COS2T)]X 

K  tanr/tan/3 

*2 

[<K   tsnr/tan/S) 2  +   (ft tanr sinr)2  +  eos2^  *• 2K sinM* 

-(COST + K tanT sinr) 

i(K  tanr/tan/5)2  +   (K tanr sinr)2  + COS2T + 2K sin2r] * 

y2 - o    , 

where r end ,S are respectively the trim and deadrise angles of the plan- 
ing body, and the quantity K is a function of deadrise angle, defined in 
Reference 2 as the ratio of two distances -- one from the centerline of 
an immersing wedge to the maximum pressure point, and the other from this 
centerline to the still water intersection point, respectively. This def- 
inition shows K to be a function of the planing body deadrise p since the 
immersing wedge in Reference 2 has the same deadrise as the planing body. 
Shown in Figure B~l (page 59) is a curve of K vs. wedge deadrise angle 
obtained from the results of Reference 1. The curve may be used to obtain 
K for the purposes of calculating a.j, Pl,...,yi above if the wedge dead- 
rise angle in Figure B-l is taken as /3. 

APPENDIX C 

DERIVATION OF EQUATION (1) 

The reader is referred to Figure 1 for the following development of 
the penetration velocity of the associated immersing wedge since, in this 
Figure, true view dimensions of the planing body are clearly represented. 
The derivation is a result of the mathematical statement of the physical 
condition discussed in the text, namely, to an observer fixed in a sta- 
tionary plane taken normal to the stagnation line of the planing body, 
the motion of this stagnation line in the plane must be equivalent to the 
motion of the traveling maximum pressure point of the immersing two- 
dimensional wedge which represents the planing surface. 

In Figure 1, the distance that the body must travel in the x-direc- 
tion in order that the stagnation line pass completely through the sta- 
tionary plans is 0Kl COST. At the time when the point Sj -jn the step en- 
ters the stationary plane, this plane intersects the extended keel line 

- - • ' 
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at Kx. It can be verified that the length SyKx measured in the plane of 
the planing surface bottom is 

SlKl -^    , (C-l) 1 *  cosP cosa 

where Cs is the labeled distance from the centerline plane to the inter- 
section of the stagnation line and step, and where a is the angle between 
the keel and stagnation line of the planing surface. Also, 

S,K, 
0KX  =-4-

L   . (C-2) 
sma 

The time, t,   taken by the body to traverse the distance OKl  COST at 
the planing velocity VR  is 

0Kl  COST 

To an observer fixed in the stationary plane, it then appears that the 
traveling maximum pressure point of the associated deadrise wedge is mov- 

.. ing outboard along the w«dg« with velocity v',   where 

i 

i • i 

i 
which, by (C-l), (C-2), and (C-3), is 

,'m v    Slna T  «^ 
" COST 

The remaining problem is to relate the penetration velocity, vQ, to 
this velocity outboard along the wedge. To this end, consideration will 
be given to the flow field of the immersing wedge of deadrise $ in the 
stationary plane (Figure 2). In this Figure are labeled the analogous 
distances which appear in Figure 1, namely, y', C ', and C ', which are 
the distances from the centerline plane to the still water intersection, 
to the maximum pressure point, and to the spray root, respectively. 
Clearly, from this Figure, 

V v n cosp 
v' = —V  , (C-6) 

a 

where the dot indicates time differentiation. 

The flow about an immersing wedge changes with time. However, this 
time variation of the flow is in reality a spatial expansion or growth of 
a single flow pattern. Hence: if certain relations between distances in 
the flow pattern hold true for one time, they are invariant for all times. 

• ' 
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V»ey'  , (C-7) 

or, equivalently, 

This condition, which may be termed a "similarity of flow condition," 
gives 

Combining eauations iC-7) and (C-9) and di f ferentintina wit-.h r». 

cj-±cn'     , (c-io) 
e     f 

which, when substituted into equation (C-6), results in 

tana - K  ?aT"   . (C-13) sinp 

Curves of v0/VH  vs. r with /Sfl as parameter appear on Figure 8. 

I 

I 

I 

I 

V-jsfc «-•> ! 

1 it also gives 

Cs' » Kf     . (C-9) 

Here,   e   and K are constants   for any given deadrise angle.   It will be J 
shown,   however,   that s  disappears in the succeeding development so that 
the  final equation depends on K only. 

i 
The curve of Figure B-i shows K  vs. wedge deadrise angle. This I 

curve may be used to obtain K  vs. fia  if the wedge deadrise angle in this 
Figure is taken as P>a.   It is noted that Figure B-l was also used to ob- g 
tain K  vs. fi,   the planing body deadrise angle (see APPENDIX B, page 32). ] 
These two uses are possible only if it is assumed that the physical flow 
pictures in planes normal to the keel and normal to the stagnation iine 
both are well represented as an immersing wedge. | 

i 

e CUB/0. 

I Finally, if the right-hand side of equation (C-8) is used for C ' and the 
right-hand sides of equations (C-5) and (C-ll) are equated, the relation 

sin/30 sir.a | 
" K  COST    " 

is obtained. It should be remembered from equation (C-9) that, here, K is 
considered ag • function of 0a. For computations! purposes, use is -.-ds 
of the following relation for tana, which was obtained from equation (IS) 
of Reference 2: 

.1 

• 
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1 APPENDIX D 

DEVELOBGNT OF THE TRANSFORMATION EQUATIONS 

WHICH RELATE THE "STANDARD PORPOISING STABILITY DERIVATIVES" 

TO THOSE DERIVED IN THIS REPORT 

n 
n 
i- 

1 

• 

n 
i 
i 

'in 
• i - 

D 

I! 

In this study, "standard porpoising stability derivatives" are de- 
fined as those hydrodynamic force and moment derivatives of use in a 
linear porpoising stability analysis and derived from motions of, and 
about, the center of gravity of the planing body. These differ from the 
stability derivatives previously considered in the body of this report in 
that the latter are derived from motions of, and about, the leading edge 
of the wetted area of the planing body. 

The two axis systems which delineate the above reference systems are 
shown in Figure 17. They are the space-fixed (x*,z*) axes and the body- 
fixed (x,z) axes. The latter are fixed in the planing body at the equi- 
librium point of intersection of the keel with the undisturbed water sur- 
face and are fixed in orientation. The planing body is shown in Figure 17a 
in its equilibrium planing condition, and in Figure 17b in an arbitrary 
perturbed state, where the body has been displaced and rotated about the 
C.G. In Figure 17b, the coordinate system fixed at the initial leading 
edge of the wetted area is displaced distances x and z from its initial 
state (denoted by 0),     nd the center of gravity is displaced from its 
inir.ir.l stare hv nisrut. ^s x._ and z*_. The relations between these nia-      - ., ^ QQ ^        QQ 
r\l<^***»*vtAv\t-<* witH     frhA     at tA/tf      /•» T     o     r* r\ o r* <T«k     in     ni rrh     oniri*     nnrtur      r na     r>a» o r a. *• 

of gravity taken into account, are 

CG +    6 (sin6 - sin<50)   + a(cos#   - cos#0) 

z =  z*     +   b \coso — cosSQ) — a{ain& — sin#0) 

(D-l) 

(D-2) 

where the distances a and 6 are respectively the perpendicular distance 
from the C.G. to the perpendicular tc the keel at the point 0, and the 
perpendicular distance from the C.G. to the keel (note Figure 17). The 
first terms on the right-hand side of (D-l) and (D-2) are the changes in 
x  and z due to pure displacement of the C.G.; the remaining terms are the 
^l>«n net a  1 r» jr and z due to pure rotation about the C.G. 

Equations (D-l) and (D-2) mav be differentiated to give the rela- 
tions between velocities in the two systems. Furthermore, since the angles 
and angular rates of the two systems are identical, the resulting equa- 
tions relating forces, moments, displacements, and velocities between the 
two systems are: 

M 
zN 

a/V ;— • M* 
sinr 

(D-3) 

• - • 
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2 -Z* (D-4) 

x ' x»G + 6(sin<9 - sin#0)  + o(co»0 - co&6Q) (D-5) 

z = z£G +  6(co3^ - cos<90) - o(sin^ - ain<90) (D-6) 

u •  u£G   +   bq*COsO -  ag'sinC (D-7) 

u> = w£G -  6<j»sin» - oq*cos^ iD-8) 

r  = 0 (D-9) 
I 

q = g*  , (D-10) 

where 
I 

W      is the moment about the instantaneous position of the lead- 
ing edge of the wetted area; -j 

t 

M* is the moment about the C.G.; 

N is the resultant force normal to the keel; 

q*, q are the pitching angular velocities of the body about the 
C.G. and the origin of the (i,i) coordinate system, re- 
spectively; I 

u, if src- T£j,cciti?.s ui tuc center oi tiie »x.ii cuuroinace system 

 ._ — —._ ,  ., 

U
C6'
W
CG 

are velocities of the C.G. along the x* and z" coordinate 
axes, respectively; 

Z* m Z    is the vertical force; J 

r » 6    is the trim angle of the body. 

In a linear analysis, it is permissible to replace the normal force N by 
the vertical force Z. This substitution is made in the following develop- 
ment . 

Consider the following functional relations: 

Z*   - Z(x,   i, u, 0, T,   q) \ 
I M*  - M'(x,   t,   u,   v,   T,   q) 

After applying the "chain rule" of partial differentiation, equations 
(D 3) through (D-10) are used to arrive at the following resultant ex- 
pressions: 

zco 
a   2* 

2\.      -   Zv 
CG 

•J 

\ 

•   • 
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Z*e      - ZT - Zz(b ain80 + a cos0o; 

2*9«    - Zq - Zu(-b cos60 + a sin0o)  - Zv(b ain80 + o coa60) 

M\.     -   /«z   - aZ2   - -A"^ 

/ Z     \ 
1 •*nT

0 J \ 

M*q .     =• tf ?- oZq - (Mn -oZu)(-b CCB60 + a sin£0) - ^ -a2^K*» sin^o + ° cos0o) • 

These are the transformation equations which give the stability deriva- 
tives in the {x*,z*) coordinate system in terms of those derived in the 
text,   namely,   those  in the   (x,z) coordinate  system. 

1   ' 
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TABLE I 

TABULATION OF TEST DATA AND RESULTS 

TEST PARAMETERS TEST RESULTS 

Triii Angle, r, 
deg. 

Load, A, 
lb. 

Wetted Length, Lu, 
beaut 

Wetted Width, 2Cn, 
beans        P Lift Coefficient, 1L 

e - 10° V„ « 2"».7 ft./aec. 

2 2.40 0.93 0   64 0.00837 
2.40 0.98 0   64 0.00769 
5   40 1   19 0.76 0.00726 
3.40 1. 12 0   74 a.     ft A a 1 *• 

V •   VVQ A   t 

4 4.91 0.50 0.62 0.0S92 
4.SI 0   48 0   64 0.0642 
5   91 0. 58 0   72 0.0531 
5.91 0.58 0   76 0.0531 

6 4.92 0.36 
0.38 

0   64 0.1145 
4.91 0.60 0.1007 
4.9? 0.36 0   62 0.1145 
6.92 0.49 0.74 0.0871 
6.92 0. 48 

C.42 
0   7 4 0   0904 

6   92 0. 70 0.1187 
6.92 0.46 0.76 0.0988 

a 4.93 0.22 0.5C 0,3102 
4.93 0   22 0.52 0.3102 
6.93 0   3G 0   66 0.2264 
6. 93 0.35 0.70 0.1732 
6.93 0   35 0.70 0.1732 
6. 93 0.34 0   66 0.1811 
9.93 0.36 0.78 0.2311 

10 S.94 0   29 0.74 0.2148 
5. 94 0.23 0   58 0.3364 
S.94 0.24 0.60 0   3153 
6.94 0.10 0.64 0   2305 
6.94 0   30 0.64 0.2305 

12 4.9S 0   18 0.50 A   / £ T n 

6.95 0   20 'J   41 0   5133 
6.95 -- .• 0. 2 0 n   *1 0.J133 

6 = 20° VM - w.e ft./ate. 
^m 

0   00128 2 1.9C 1                     2.13 0   58 
1.90 |                    2. 12 0.58 0.00129 

• 1 .90 0   80 A       Si 0.00907 
2.90 0.92 0   54 0   0104 
2.90 0. 92 0.4? 0   0104 

6 3. 90 0. 59 0   46 0   0336 
4. 90 ]                      0   68 0. 54 0.C3 2S 

I 4. 90 0   44 0. 66 0.0766 
4.90 0   46 0.48 0.07 02 
4.90 0*3 0.4S 0.0844 
3.90 0   40 0.42 0   0748 

12 2 . SO 0   21 0   30 0.200 
2 .90 i                      0   19 0   30 0.250 
3.90 |                      0.23 0   36 0.225 

/6« 30° VR = 2U.6 ft./«ec. 
* i . e< |                     3.20 0   52 0.00OSS2 

l.as 1      4«i 
*\      r m n   nnn<4* 

3.8S 0. 56 0.000657 
3.8S !                       4.54 0.72 0.000572 
1.8S 3.24 0.56 0.0C0S66 
3.85 4.41 0.72 0.000657 

4 3.8S 1.76 0. 58 0.00381 
3.8S 1                      176 0.56 0.00381 
3.85 1                      1.76 

|                      12 7 
0.5! 0.00381 

1.85 C  40 0   C0352 
1   85 j                      1.27 0.40 0.00352 

6 3.85 1.00 5.46 0.0118 
3.85 1.02 0   46 0.0113 
3   85 !                      1. 02 0.46 0.0113 
5.85 1.26 0.56 ..0113 
5.85 1.24 0.58 0.0118 

I 

I 

I 

I 

I 

I 

I 

I 

I 

f 

I 

I 
[ 

I 

] 
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TABLE I (cont'd.) 

TEST PARAMETERS TEST RESULTS 

Trim Angl 
deg. 

e, T, Load, A. 
lb. 

Wetted Length,  Lu, 
beams 

Welted Width, 2Cn, 
beans        p Lift Coefficient, C, 

^ = 30°        (cont'd.) VR = 2H.6 ft./sec. 

8 5 85 0.80 0.52 0   0281 
5   85 0   78 0   50 0. 02"»5 
3.85 0   63 0.40 0.029S 
3.85 0   62 0.40 0   0306 

10 5   85 0.61 0   46 0. 0482 
5   85 u. t>i n      a a 

w . * o 0.04** 
7.85 0   73 0.56 0.0451 
7.85 0.78 0.56 0.0396 

12 7.85 052 0   52 0.0889 
7   85 0   S3 0   52 0.0854 
5   85 |                    0.45 0  44 0.0898 
5   85 !                    0.45 0   46 0.089* 

I 

: " 

TABLE II 

SUMMARY VABLE OF THE CALCULATED STABILITY DERIVATIVES 

DERIVATIVE VALUE IN TERMS OF EQUILIBRIUM Z-FGRCE 

*. 

W, 

2-Force   Derivatives 

Lfesinr0 "o 

5.4 
sin 2TQ ^C 

Kstanr0     ° 

3K 
2Lk        /cos4\MMi_2 
 i j i — ivx • »-~~   &>£Q 
, COSTQ    \ COS/3/   \V0/ 

W-Moment   Derivatives 

sinT, 

3.6L* 

sin 2r„ Z° 

AL 
*-2 

3K„ tanr„    ° 

3K„COST0 \v0J \ cos fi )    ° 

• 
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FIOURE   3 

VARIATION OF ASSOCIATED  WEDGE  DEADRISE  ANGLE 
WITH  PLANING   BODY  DEADRISE   AND  TRIM   ANGLES 
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FIGURE 5 

TYPICAL   UNDERWATER   PHOTOGRAPHS 
OF  THE   PLANING  BODY 

PLANING    CONDITIONS 
0* \0*t T = I2% A«7LB.       v„ « 24.66 FT./SEC. 

PLANING   CONDITIONS 

£«20\ T«2*,A«2LB. V„« 24.50 FT./SEC. 

A«  MEASURED    VALUE   OF   Cp 

B= PREDICTED   VALUE   OF  Cp FROM   EQ. (8)    AND   Lk 

C=  STAGNATION   LINE 

D=   KEEL 

• ' 



FIGURE  6 

COMF'AR'SON    OF   EXPERIMENTAL    AND  THEORETiCAL   VALUES 
OF   THE   LIFT COEFFICIENT 
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Fie'JRE  7 

VARIATION OF THEORETICAL  MAXIMUM   PRESSURE COEFFICIENT 
WITH WEDGE DEADRISE ANGLE 
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HGUKE  e 

VARIATION    Or   ^-    RATiO 

WITH  PLANING    BODY   DEADRISE    AND   TRIM  ANGLES 
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FIOURE  10 

VARIATION OF EMPIRICAL OEAORISE  CONSTANT J 
WITH   PLANING   BODY  OEADRISE  ANGLE 
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F'QURE   !! 

A PLAN   VIEW OF  THE   PLANING   BODY 
WITH   SECTIONAL   PRESSURE   CONTOURS 

rncaaurib OiS • j?isu i iuli 
ACROSS   SECTION     A-A 

PRESSURE "S^S. 
DISTRIBUTION ^2k*w 

ACROSS   SECTION   6-C ^H&/) V; 
^^^7/   PRESSURE   DISTRIBUTION 

ACROSS   SECTION 8-8 
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FIOURE   IS 

VARIATION OF THEORETICAL AVERAGE  PRESSURE   COEFFICENTS 
WITH WEDGE DEADRISE ANGLE 
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FIGURE  14 

COMPARISON OF  EXPERIMENTAL AND THEORETICAL 
0IMENSI0NLE3S  WETTED AREA 
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FIGURE    IS 

VARIATION OF f SIN T/TAN# 

WITH PLANING BODY DEAORISE AND TRIM ANGLES 

8 

IC       20       30       40 

PLANING S03Y DEADRISt ANGLE, £, QES. 

50 

f 

I 

J 

J 

, 
* 

•• 

I 



I 

i 

l-»S2 
-II- 

" 

; 

! 

! 

n 
i. 

I 

! 

i   ' 

I 
l_ 

I 

t 
i i. 

Ul 

<9 

»- 
z 
UJ o 
hi 
U. 
Ul 
o o 

u. 
3 

2 
Z 

a * 
UJ   «« 

ui-^ 
c 

u 

a: o 
ui 

u. 
o 
!» 

5 
1 

• 

u 

Ul 
o 
UL 
U. 
ill 
O 

o o o q O   »    • -: o   o 

3  p 

* o 



! 

j 

I 

- 



•   3? • 

FIGURE 18 

TRUE VIEW OF ONE SIDE OF  THE  SYMMETRICAL WETTED AREA 
OF THE PLANING BODY 

AXIS OP ROTATiON 

WTUP OP PLANIK* tOOY 

• ~. 



. si - 

FIGURE it 

VARIATION OF   P,(a) AND  F8 (a) 
WITH   THE   ANGLE  BETWEEN   THE  KEEL   AND  STAGNATION   LINES 
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